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Electroweak Symmetry on the Tangent Bundle

R. G. Beil1
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Various symmetries of elementary particles can be represented by gauge
transformations acting on a fiber of the tangent bundle. These are diffeomorphisms
of linear groups which act on vertical vector fields. It is shown how the electroweak
vector boson potentials and a corresponding Kaluza–Klein-like metric can be
obtained by application of SU(2) 3 U(1) to a tangent fiber. This geometry gives
a more unified approach to gravitation and gauge symmetries.

1. INTRODUCTION

Consider the four-dimensional base manifold M of space-time with
tangent bundle P: TM → M. The bundle TM is itself an eight-dimensional
differentiable manifold with its own tangent structure TTM which can be
separated into horizontal and vertical subspaces. In the simplest case, a
Minkowski metric can be associated with the horizontal part and a metric
on the vertical part can also be taken initially to be Minkowskian. This means
there is a mapping of an orthonormal basis of M to a similar basis on the
fiber of TM given by an orthonormal tetrad. The tetrad accomplishes a trivial
soldering of the fiber to the base space. Physically, one can think of the
coordinates of M as “laboratory” coordinates and the fiber coordinates as
“internal” coordinates of a local system, say, a particle. The tetrad is simply
a Lorentz transformation. Starting from this geometry, it is possible to operate
on the fiber coordinates with a linear transformation without at the same
time transforming the base space coordinates. This is a vertical automorphism,
sometimes called a “pure” gauge transformation [5, 25, 31]. The transforma-
tion group could be GL(4; R) or one of its subgroups. The effect of such a
pure gauge transformation is to rotate or distort the vertical tangent basis. If
the fiber metric is not preserved, then the base space metric also changes
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due to the soldering. Thus, even though the coordinates of M are unaffected,
M receives a new metric. This idea will be made clearer in the next section.

In general, for a pure gauge transformation dependent on the base space
coordinates x, the new metric of M is also x dependent. This could produce
any of the metrics of general relativity. Equivalently, these same metrics can
be associated with general covariant coordinate transformations acting on M
in the traditional way. (A coordinate transformation of this type would be
the inverse of the corresponding transformation to a local inertial frame.)
The local equivalence of coordinate and gauge transformations has been
discussed [9, 10, 13]. The use of this equivalence illuminates the problem
of general covariance versus gauge invariance (as articulated, recently, for
example, by Wilczek [35]). Note, incidentally, that even though the metrics
associated with the gauge and coordinate transformations may be the same,
the connections are different, being the affine connection and the Levi-Civita
connection, respectively [9, 13].

Even more generally, if the gauge transformation is also dependent on
the coordinates y of the tangent fiber, the result can be a Finsler or Lagrange
metric [27]. Actually, the theory is best expressed in the context of Finsler
or Lagrange geometry. The reader unfamiliar with this mathematics should
consult one or more of the recent treatments [2, 4, 27]. For example, the
gauge transformations described above are closely related to certain transfor-
mations of differential forms exploited by Chern and collaborators (ref. 14,
p. 53; ref. 6, p. 17).

There are several ways this pure gauge transformation concept can be
applied: For example, the tetrad could be a moving frame [11, 12] and the
group could be O(1, 3; R), a Lorentz group with gauge parameters being
functions of a path parameter. This produces well-known types of particle
transport such as Frenet–Serret and Fermi–Walker. Another example is the
Abelian group U(1). This has been shown in the context of Finsler geometrical
methods to produce a metric which has the appearance of a Kaluza–Klein
type of metric, but a somewhat different interpretation. This leads to a new
approach to the unification of gravitation and electromagnetism [10, 13]. In
this theory, the potentials are related to the tetrads themselves and are not
connections, as in the usual treatments.

In previous work [10–12], it was mentioned that the idea of tangent
gauge transformations would also work for symmetries such as SU(2) or the
electroweak SU(2) 3 U(1). Indeed, the approach is compatible with any
subgroup of GL(4; R). It is the purpose of this paper to present a specific
representation of the electroweak symmetry applied to tangent fibers and to
show how this relates to the Weinberg–Salam theory. This provides the SU(2)
solution of Open Problem #2 [13]. Note that, although work in this paper is
done in a four-dimensional tangent fiber, many of the results can be translated
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to fibers of other dimension corresponding to well-known Yang–Mills theo-
ries. This is accomplished by mappings given in refs. 10 and 29.

2. GEOMETRICAL PRELIMINARIES

Local coordinates in the eight-dimensional TM are designated (xm, ym).
The natural coordinate vector fields are /xm and /ym. Note that the y’s
are both the fiber coordinates ym and the components of the tangent vector
y 5 ym (/xm).

The transformation which is a change of local section or coordinate
transformation

x8m 5 x8m(xn) (1)

will be examined following Miron and Anastasiei (ref. 27, Chapters VI and
VII). This will be contrasted presently with the pure gauge transformations
described in the Introduction. The coordinate transformation matrix is written
as X*m

n 5 x8m /xn.
Since dx8m 5 X*m

n dxn, the identification of the ym as tangent vector
components implies

y8m 5 X*m
n yn (2)

The natural basis of vector fields transforms as



x8m
5 X n

m


xn 1
X n

m

x8l
y8l 

yn



y8m
5 X n

m


yn (3)

with Xm
n X*n

l 5 dm
l .

The basis obviously does not transform covariantly. A useful procedure
at this point is to construct a new basis, called the local adapted basis, (d/
dxm, /ym),

d
dxm 5



xm 2 N n
m



yn (4)

This transforms covariantly if N transforms according to

N 8n
m 5 X*n

l Nl
rX r

m 1 X*n
l

Xl
m

x8r
y8r (5)

N is called the nonlinear connection.
A dual basis for the adapted basis is (dxm, dym), with

dym 5 dym 1 Nm
n dxn (6)

The nonlinear connection defines a horizontal lift which splits TTM into
horizontal and vertical subspaces.
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A metric on TM is

dS2 5 Gmndxmdxn 1 Hmndymdyn (7)

This metric is block diagonal in 414 dimensions in the adapted basis
and is scalar under a coordinate transformation. This is sometimes called the
horizontal lift metric [15].

Traditional Kaluza–Klein theories, however, consider a different metric
associated with the natural basis (dxm, dym). The use of (6) in (7) gives the
familiar matrix

ZZGmn 1 N r
mNs

nHrs N r
mHrs

Ns
nHrs Hrs

ZZ (8)

Here the vertical metric is four dimensional, but the generalization to
any number of dimensions is obvious. See, for example, ref. 10.

Kaluza–Klein theory is developed from the horizontal block of the
metric. There are a number of recognized problems with this metric [20].
One problem is the presence of the connection N in the metric. This introduces
a difficult nonlinearity into the theory which has no reasonable physical
interpretation. How can a metric contain a connection? How does one interpret
a new connection computed from this metric?

This problem does not arise when the adapted basis is retained. The
metric components G do not involve the connection. Both G and H transform
covariantly, which implies that the physical properties of space-time are
preserved under a coordinate transformation, as should be expected. The
equivalence principle of general relativity is applicable.

The use of the adapted basis leads to reasonable physical equations. For
example, a geodesic equation is easily derived by standard methods. The
connection N is related to the Levi-Civita connection, which in turn is related
to the external field. The equation of motion is thus a geodesic equation rather
than an equation of geodesic deviation as in the usual Kaluza–Klein theories.

Attention is now directed to the pure gauge transformation. For physical
reasons, it is assumed that initially both the horizontal metric G and the
vertical metric H are Minkowskian (i.e., a Lorentz type, hmn). This leaves
out purely gravitational effects and allows a focus on the physical results of
the gauge transformation. As indicated in the Introduction, the G components
can refer to a laboratory frame and the H components can describe the internal
space of a local system such as a particle. The vector y would then be the
velocity of the particle.

The total metric is

dS2 5 hmn dxm dxn 1 hab dya dyb (9)

Early Greek indices are now used to distinguish the vertical or internal
subspace.



Electroweak Symmetry on the Tangent Bundle 595

Obviously there is a trivial soldering or mapping between the two
metrics:

hmn 5 habea
meb

n (10)

The orthonormal tetrads ea
m are just Lorentz transformations. The mth

column of the tetrad represents the components of a basis for the lab frame
expressed in the basis of the internal frame.

The tetrad soldering or coupling of the fiber space to the base space
has occasionally been advanced [18, 20, 25, 33] as an ingredient of a gauge
theory of gravitation.

The pure gauge transformation is now defined by

xm 5 xm, ya 5 V*a
b yb (11)

In other words, it acts only on the fiber coordinates and not on the coordinates
of M. This is the same transformation defined by Miron and Anastasiei (ref.
27, p. 97), Nash and Sen (ref. 28, 177), Mack (ref. 25, p. 141), and many others.

The transformation matrix V* is nonsingular and defines a diffeomorph-
ism such that the fiber is preserved. It is a finite representation which contains
the parameters of the group.

The vertical basis map is



ya 5 Vg
a



yg, Vg
aV*a

b 5 dg
b (12)

The new internal metric is

Hab 5 hgdVg
aV d

b (13)

Various physical effects of this transformation are possible, depending
on the group associated with V. Examples are O(1, 3), U(1), and SU(2), as
mentioned in the Introduction. In general, a Lorentz group is metric preserving
and could correspond to particle transport (boosts and rotations). The other
groups, while metric preserving when applied to their own principal bundles,
are not metric preserving as applied here to the tangent space. They are
similar in this respect to, for example, “shear” and “scale” transformations
in the terminology of Hehl et al. [18] and Ivanenko and Sardanashvily [20].

The soldering mechanism commutes with the gauge transformation, so
that the new base space metric is

Gmn 5 Habea
meb

n (14)

The metric G can also be written in the form

Gmn 5 hgdbg
mbd

n (15)
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where

ba
m 5 Va

beb
m (16)

is a new tetrad (not necessarily orthonormal) which represents the components
of a new set of bases for M.

So the gauge transformation acting in the tangent fiber gives not only
a new vertical subspace metric, but also a new metric in the base space. This
new metric in M occurs without a change of coordinates. One could also
consider a more general gauge transformation where V is dependent on y.
This leads to metrics which are y dependent and are either Finsler metrics
or generalized Lagrange metrics [27].

In contrast with many gauge theories, where the internal symmetry is
only loosely attached, this theory is very much like some theories of gravita-
tion, especially tetrad theories, with a close coupling between laboratory
space-time and the internal particle space.

3. ELECTROMAGNETISM FROM U(1)

As a simple example of how this works, the U(1) case is considered
first. It will be useful to write the transformation matrix in the form

Va
b 5 da

b 1 ca
b (17)

The new metric is

Gab 5 hab 1 2Cab 1 hgdCg
aCd

b 5 hab 1 Uab (18)

where Uab is a metric-like matrix containing the parameters of the gauge
group.

In laboratory coordinates, the metric is

Gmn 5 hmn 1 Uabea
meb

n (19)

A particular example of gauge transformation which leads to electromag-
netism is given by

Va
b 5 diag(1 1 c,1,1,1) (20)

This has the form (17) where the only nonzero element of ca
b is c0

0 5 c.
This is a noncompact representation of the one-parameter Abelian group.

It is related to the usual compact representation, U(1), which is also one-
parameter Abelian. The actual symmetry of electromagnetism can be consid-
ered to be either compact or noncompact (ref. 21, p. 101).

The metric (19) is easily seen to be
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Gmn 5 hmn 1 (2c 1 c2)e0
me0

n (21)

which can be reparametrized using (1 1 C)2 5 1 1 x to

Gmn 5 hmn 1 xe0
me0

n (22)

But this is just a version of the metric

Gmn 5 hmn 1 kBmBn (23)

where k is proportional to the gravitational constant and Bm is gauge related
to the electromagnetic potential vector of an external field. Essentially, the
gauge transformation has “turned on” the electromagnetic field. The metric
(23) was introduced in a Finsler context [7] and has since been studied by
several investigators [1, 4, 19, 22, 24, 26, 32]. This is indeed an electromag-
netic metric since it produces a geodesic equation which is the Lorentz
charged particle equation and a curvature which contains the electromagnetic
energy-momentum tensor [7, 13]. Note that, in contrast with traditional
Kaluza–Klein treatments, where potentials are connections and fields are
curvatures, here the potential appears in the metric as a component of a tetrad
and the fields are part of the connection. This means, for example, that the
equations of motion are geodesic equations instead of equations of geodesic
deviation. Fundamentally, in the traditional version, the natural bundle basis
is taken and (23) lives in the total bundle space. Here, the local adapted basis
is taken and (23) lives only in the base space.

The Bm are just vectors and transform as vectors under coordinate trans-
formations. Consequently, the electromagnetic fields, Fmn 5 Bn /xm 2 Bm/
xn, transform as tensors, as they should. The connections are related to these
potentials and fields by equations given, for example, in ref. 13 and transform
properly as connections.

4. ELECTROWEAK SYMMETRY

The Weinberg–Salam theory involves the interaction of spinor lepton
fields with four vector gauge bosons. The boson potentials are written here
as W 0

m, W 1
m, W 2

m, W 3
m. The potential W 0

m is commonly labeled Bm; the notation
is changed here to avoid identification with the Bm of the preceding section.

These boson potentials can be derived from a U(1) (actually a non-
compact, one-parameter Abelian) gauge transformation of the form

Va
b 5 diag(1 1 r, 1 1 m, 1 1 m, 1 1 m) (24)

The parameters r and m are related by a constant factor, as will be seen, so
only a single Abelian parameter is involved.

The new basis is
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ba
m 5 ((1 1 r)e0

m, (1 1 m)e1
m, (1 1 m)e2

m, (1 1 m)e3
m)T (25)

with metric

Hab 5 diag((1 1 R), 2(1 1 M ), 2(1 1 M ), 2(1 1 M )) (26)

where R 5 2r 1 r2 and M 5 2m 1 m2. The laboratory metric (19) is

Gmn 5 hmn 1 Re0
me0

n 2M(e1
me1

n 1 e2
me2

n 1 e3
me3

n) (27)

This suggests the identification

W 0
m 5 R1/2e0

m, W i
m 5 M 1/2ei

m (28)

Other schemes for setting the boson vectors are possible, but (28) appears
to be the simplest and gives a good picture of the method. The metric
then becomes

Gmn 5 hmn 1 habWa
mWb

n (29)

which has the appearance of a classic Kaluza–Klein Yang–Mills expression.
Again, however, the W’s are potentials, but not connections.

Consider now the SU(2) part of the symmetry. The most natural represen-
tation of SU(2) as a 4 3 4 matrix uses the quaternion covering group SL(1;
Q). A useful representation of one rotation is

Vb
a 5 ))

cos u 0 0 2sin u
0 cos u sin u 0
0 2sin u cos u 0

sin u 0 0 cos u )) (30)

The associated metric is easily computed from (13) and (14):

Gmn 5 hmn 1 (cos2u 2 sin2u 2 1)e0
me0

n 2 2 sin u cos u(e0
m e3

n 1 e3
m e0

n)

2 (cos2u 2 sin2u 2 1)e3
me3

n (31)

This result shows that the SU(2) group is not entirely metric preserving on
the tangent space. The e1

m, e2
m portion of the metric is preserved and is a

simple space rotation.
The e0

m, e3
m portion of the metric, as is obvious from (31), is not preserved

and experiences a mixing of space and time components. The physical inter-
pretation of this is easily seen by the application of (30) to the
(W 0

m, 0, 0, W 0
m)T state, using (28), which gives the mixed potentials

Am 5 W 0
m cos u 2 W 3

m sin u, Zm 5 W 0
m sin u 1 W 3

m cos u (32)

For u equal to the Weinberg angle, the potential Zm is the massive neutral
boson and Am is the potential of the massless electromagnetic field. Since
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AmAm 5 R cos2u 2 M sin2u 5 0 (33)

then R1/2 5 M1/2 tan u, giving the relative strength of the Abelian gauge
parameters. This reproduces the ratio of the weak and electromagnetic cou-
pling constants.

A Kaluza–Klein-like expression like (19) of this metric can easily be
obtained using (24) and (30). Metrics involving the other two rotations or
various combinations of SU(2) symmetries are also derivable in a straightfor-
ward fashion.

So the electromagnetic potential is gauge related to the timelike compo-
nent of the basis tetrad. The actual gauge transformation is an Abelian dilation
of the timelike component which produces a change of scale in the space-
time metric. The parameters of the previous section can be related by setting
x 5 R. The potentials then satisfy W 0

m 5 k1/2 Bm.
The weak potentials W i

m involve a dilation of the spacelike components
accompanied by a similar change of scale. This indicates a possible more
fundamental interpretation of gauge transformations as distortions of space-
time itself.

Note that there is no need for compactification or dimensional reduction
in this theory since the “extra” four dimensions have a natural physical
interpretation as being related to the system velocity.

The appropriate connections will be those computed from the metric
(29) and not the usual connections involving the potentials themselves. The
new connections contain derivatives of the potentials and/or fields as already
worked out for the electromagnetic case [7, 9, 13].

In the complete electroweak theory, the boson potentials are coupled to
spinor lepton solutions. The physical interpretation of related symmetries of
the internal space in spinor geometry is a topic for future investigation.

4. DISCUSSION

The symmetries of the boson gauge potentials of the Weinberg–Salam
model (ref. 21, p. 337; ref. 34, p. 307) have been reproduced by a pure gauge
transformation on the tangent bundle. In the process, an alternate geometrical
foundation for gauge theory has been pointed out. Principal features of this
foundation are the coupling of internal and external space metrics and a
shifting of the traditional correspondence of potential } connection, field }

curvature to a new correspondence of potential } tetrad (a part of the metric),
field } connection [7, 9–11, 13].

Since the new correspondence is the same as in many gauge theories
of gravitation, a promising avenue toward unified theories has been opened.
For example, much effort has been expended trying to fit gravitation into
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the traditional correspondence scheme. However, as pointed out by Ivanenko
and Sardanashvily (ref. 20, p. 32), gravitational tetrad potentials can simply
not be connections. In the new scheme, both gravitational and gauge potentials
appear in the metric, while both gravitational and gauge fields occur in the
connection. The equation of motion is a geodesic equation and not an equation
of geodesic deviation.

Another key feature is the contrast between coordinate and pure gauge
transformations. The coordinate transformations produce the nonlinear con-
nections N (and their associated Levi-Civita connections) which relate to
“transplantations” between neighboring points in space-time. The pure gauge
transformations produce affine connections [9, 11, 13] which relate to the
transport of a particle under the gauge field. There is a correlation of the
internal potential of the particle with the external potential as discussed by
Konopinski [23], Schweizer [30], and Beil [8].

The manner in which coordinate and pure gauge transformations can
be combined has been given in ref. 11. Total particle transport is determined
by a Levi-Civita connection plus a pullback of the gauge connection under
a coordinate transformation. This gives a naturally unified approach to gravita-
tional and gauge field effects. There is a general equivalence between gravita-
tional and gauge connections.
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